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ABSTRACT 
 
The effect of phase transition during liquid impacts involving entrapped 
gas pockets might play an important role for fluids close to 
thermodynamic equilibrium as LNG/NG in tanks of LNG carriers. 
However, this role is disregarded during Sloshing Model Tests. This 
issue was addressed in Braeunig et al. (2010) by introducing a simple 
1D piston model. The phase transition between the liquid and its vapor 
was described through a simple quasi-static relaxation model including 
thermal exchanges at the wall. 

A more advanced version of this 1D model is presented. A 
thermodynamic description of the relaxation process from unbalanced 
conditions to the liquid/vapor equilibrium is proposed. The new model 
conserves the total energy of the liquid-vapor system. It generalizes the 
classical Bagnold‟s model (1939) and can be formulated in 
dimensionless form exhibiting not only the usual Impact number 
(Bagnold) and numbers related to thermo-dynamic properties of the 
fluid (thermal capacities, latent heat), but also characteristic times for 
respectively mass transfer and energy transfer. 

The model shows that, as observed experimentally (sloshing model 
tests with water and steam described by Maillard et al., 2009), phase 
transition mitigates pressure impacts involving entrapped gas and 
damps drastically the oscillations of the gas pockets. The amplitudes of 
mitigation and of damping depend on the fluid properties. 
 
KEY WORDS: sloshing, LNG, phase transition, condensation, model 
test, scaling law, Bagnold, dimensionless number, compressibility. 
 
NOMENCLATURE 
 
Symbol Unit Meaning 
e J Internal energy of the vapor 
E J Total internal energy (vapor and liquid) 
n mol Number of moles of the vapor 

N mol Total number of moles (vapor and 
liquid) 

z m 
Vertical coordinate of the piston (origin 
at the bottom of the chamber, axis 
pointing upward) 

Ti K Temperature of phase i* 
Pg Pa Pressure in the vapor 
Pu Pa Ullage pressure 

i kg.m-3 Density of phase i* 
Hg J.mol-1 Molar enthalpy of phase the vapor 
R J.mol-1K-1 Perfect gas constant 
Lvap, 
Hvap 

J.mol-1 
Latent heat and latent enthalpy 
(evaporation) 

Ci J.mol-1K-1 Isochoric thermal capacity of phase i* 
M kg.mol-1 Molar mass 
Psat(T) Pa Saturation curve 
A, B, C None, K, K Coefficients in Antoine's law 

 mol.m-2.s-1 Flux of mass exchanged between the 
two phases 

q J.m-2.s-1 
Flux of energy exchanged between the 
two phases 

L mol2.K.J-1.s-1m-2 Onsager's coefficient 
Lq mol.K.s-1.m-2 Onsager's coefficient 
Lqq kg.K.s-3 Onsager's coefficient 
Mpiston kg Mass of the piston 

DR - Density ratio g/ l between gas and 
liquid 

*i=l for liquid phase, i=g for vapor phase 
 
INTRODUCTION 
 
Context 
 
Today, sloshing model tests, most of the time at scale 1:40, are 
considered as the only relevant tool for any sloshing assessment of a 
real project of LNG carrier (see Gervaise et al., 2009). The model tank 
motions are imposed by a six degree-of-freedom rig after down-scaling 
full scale calculated ship motions. The motion down-scaling is obtained 
by applying a coefficient 1/  (geometrical scale) on the amplitudes and 
a coefficient 1/  on the times, namely by keeping Froude number the 
same at both scales. Doing so does not imply that the flow at model 
scale is completely Froude-similar as the flow at Froude scale and that 
measured impact pressures can simply be up-scaled from the tests to 
full scale by Froude similarity. Indeed some physical phenomena occur 
during the impacts at full scale and not at model scale (e.g. phase 
transition and fluid-structure interactions) and some physical 
phenomena occur at both scales but differently because the fluid 
properties are not relevantly scaled (e.g. the compressibility of the gas 
and of the liquid and the surface tension between liquid and gas). 



As the density ratio DR between the gas and the liquid is kept the same 
at both scales (use of a heavy gas during the tests), the global flows are 
assumed to be statistically Froude- similar at both scales. This means 
that any possible local inflow condition for an impact at full scale is 
assumed to find a Froude similar inflow condition at model scale with 
the same probability of occurrence. Nevertheless, for Froude-similar 
inflow conditions at both scales the local phenomena will bias the 
Froude similarity during any impact. For the time being, GTT 
developed a know-how based on the feedback from the LNG carrier 
fleet in order to derive appropriate statistical scaling factors. At the 
same time a research work is carried out to define a more direct 
approach. This implies a better understanding of the scaling biases in 
order both to improve the experimental modeling (better 
representativeness of sloshing model tests) and to be able to scale 
adequately the biased experimental results. 
 
Elementary Loading Processes (ELP) 
 
Scaling impact pressures from sloshing model tests to the full scale of 
an LNG carrier implies being able to decompose all the loading 
components for any liquid impact on the walls and evaluate their 
relative importance at both scales. This question has been addressed by 
Brosset et al. (2011) by analyzing a single breaking wave impact on a 
wall, thanks to the concept of Elementary Loading Process (ELP) 
described in detail in Lafeber et al. (2012a). 

The loads induced by any breaking wave impact and more generally by 
any liquid impact on a wall are time and space distributions that are 
considered as a combination of only three components: 

 ELP1: Direct impact due to the discontinuity of velocity imposed 
by the wall to the liquid particles. This ELP is associated to the 
liquid compressibility (pressure waves) and the elasticity of the 
wall (strain waves). It leads to very sharp pressure peaks that are 
difficult to detect experimentally. 

 ELP2: Building jet. This is simply the hydrodynamic load 
associated to the change of momentum imposed by the wall to the 
flow. It is significant only at the root of the jets building along the 
wall just after the contact. The pressure signature is a travelling 
pulse which can be very sharp in some conditions like Flip-
Through impacts. 

 ELP3: Compression/expansion of gas while escaping or when 
entrapped. This ELP is associated to the compressibility of the gas. 
It is characterized by pressure oscillations, at least when no phase 
transition is involved. 

Other physical phenomena involved during a liquid impact (e.g. phase 
transition or fluid-structure interaction, development of free surface 
instabilities) modify the development of these ELPs and therefore 
influence the resulting load. Nevertheless they do not have their own 
related ELP. The most typical combination of ELPs, as determined 
from many wave impact tests in flumes, was summarized in a simple 
chart by Lafeber et al. (2012a). The possible associated physical 
phenomena are included in the chart. This chart is shown in Figure 1. 

Each of these ELPs considered separately follows a different similarity 
law. The main problem for scaling is therefore due to the interactions 
between them. GTT‟s strategy consists in studying at different scales 
relevant scenarios staging more and more complex combinations of 
ELPs and associated physical phenomena. The most simple scenarios 
are those involving a single ELP through a so-called canonical model: 
flat impact of a column of liquid without gas for ELP1, as studied 
numerically e.g. by Couty et al. (2000); drop test of a wedge on a liquid 
at rest for ELP2, as studied experimentally by Zhao et al. (1993); piston 

problem as studied analytically by Bagnold (1939) for ELP3. 

The scenarios are studied either by relevant experiments (Lafeber et al., 
2012b) or numerical simulations (Braeunig et al., 2009, Guilcher et al., 
2012) or semi-analytical developments (Braeunig et al., 2010). 

 
Figure 1 - Typical combination of ELPs - Associated physical 
phenomena (from Lafeber et al., 2012a). 
 
Influence of phase transition on sloshing loads 
 
Phase transition is naturally included in the impact chart of Figure 1, 
associated with ELP3. It could change drastically the load generated by 
the gas compression. Yet, it has not been studied much in the context of 
liquid impacts as sloshing impacts within LNG tanks. Maillard et al. 
(2009) described sloshing model tests performed in a pressure vessel 
enabling testing water and its vapour along the phase boundary. The 
tests were restricted to high fill levels and especially designed to study 
the influence of DR, but some interesting results were also found 
related to the influence of phase transition, when comparing results 
obtained with water and vapour to results in the same conditions but 
with water and a non condensable gas at the same DR. 

The statistical pressures proved to be slightly but significantly reduced 
when phase transition was possible, but only for high density ratios 
when the rate of entrapped gas pockets is high. 
Another interesting result was mentioned: the pressure signatures of 
entrapped gas pockets were completely different when vapour was 
involved than when non condensable gas was involved, as shown in 
Figure 2. In both cases, the presence of gas pockets was simply 
identified because several neighbour sensors recorded exactly the same 
signal. Moreover the rates of entrapped gas-pockets in the corners were 
similar as DR was the same. Nevertheless, the typical pressure 
oscillations for any non condensable gas pocket were replaced by a 
single pressure peak for any vapour pocket. The oscillations were 
always so much damped that they could hardly be noticed. 

 
 

Water with non-condensable gas Water with vapor along the phase 
boundary 

Figure 2 - Pressure signature for a gas pocket impact during sloshing 
model tests (from Maillard et al, 2009). 

Such influence of the phase transition happens during a period 
corresponding to a sloshing pressure pulse. The order of magnitude of 
the duration is 1 ms at small scale. The dynamics of the condensation is 
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therefore supposed to play an important role. 
 
Presentation of the work 
 
This paper presents a semi-analytical model 
which is an extension of the piston model of 
Bagnold including the energy and mass 
transfers between two phases of the same 
fluid. The scenario studied is therefore the 
canonical model of ELP3 when modified by 
the phase transition phenomenon. It is 
schematically represented in Figure 3. 

Bagnold model already proved to be very 
relevant for explaining the scaling of gas 
pocket pressures when entrapped during 
wave impacts at different scales (see Bogaert 
et al., 2010, Kimmoun et al., 2010 and 
Lafeber et al., 2012b). 

 
Figure 3 - Schematic 
representation of the 
studied scenario. 

The solution can be described in a dimensionless form using a unique 
dimensionless number S, called impact number, representing the 
intensity of the impact. 

A first attempt was made by Braeunig et al. (2010), to develop an 
extension of the Bagnold model with phase transition. This model 
showed interesting trends, matching qualitatively those described in 
Maillard et al (2009) and recalled in the previous sub-section for 
sloshing vapor tests. Nevertheless it was based on too simple 
assumptions to allow a robust use in a large enough range of 
parameters. For example it did not conserve the energy and as it was 
based on a quasi-static approach (mechanical stage + forced return to 
the equilibrium at each time step), it did not describe the dynamic 
process leading from unbalanced condition to a new thermodynamic 
equilibrium. 

The new model presented in this paper is based on Non Equilibrium 
Thermodynamics (NET). Characteristic times for thermal transfer and 
mass transfer between the two phases of the fluid will be exhibited. 
Initial Bagnold model will therefore be modified according to the ratio 
between these time characteristics and the impact duration. 
 
EXTENSION OF THE BAGNOLD PISTON PROBLEM TO 
PHASE TRANSITION 
 
Some of the different parameters used in the following sections are not 
defined directly in the text. The reader is invited to look at the 
nomenclature for definitions. See Ancellin (2011) for more details on 
the problem and its resolution. 
 
Reference problem description 
 
We consider a vertical tank with a constant internal section. A piston 
can slide vertically inside the tank. The chamber below the piston is 
filled by a pure fluid under both liquid and gas phases. The space above 
the piston is open and keeps a constant ullage pressure Pu. Figure 4 
shows a schematic representation of the problem. 

The main parameters of the problem are: 
 n, number of moles of the vapor 
 N, total number of moles (liquid + vapor) 
 e, internal energy of the vapor 
 E, total internal energy(liquid + vapor) 
 z, vertical coordinate of the piston (origin at the bottom of the 

chamber, axis pointing upwards) 

The masses of the vapor and liquid 
phases are deduced from n and N thanks 
to the molar mass M. The liquid height is 
therefore: 

  (1) 

The gaseous phase is assumed as a 
perfect gas. Therefore the vapor pressure 
Pg is expressed by: 

  (2) 

Actually E and e are variations of energy 
around a reference state defined by 
molar energies of the gas and of the 
liquid at temperature Tref. This 
reference state might be either the initial 
or the final state. It might be at the 
thermodynamic equilibrium or not. 

 
Figure 4 – Schematic 
representation of the piston 
problem with phase 
changes 

Temperatures in the gas and in the liquid are therefore: 

 (3) 

  (4) 

The problem could be expressed equivalently in terms of molar 
enthalpy of the gas and of the liquid. 

Initial conditions of the problem are given by initial values of n, N, e, E, 
z,  denoted respectively n0, N, e0, E0,z0,  with  and  respectively 
the vertical speed of the piston and its initial value. 

A thermodynamic imbalance is created either from the initial state or 
from the compression of the gas due to the piston motion. There is 
therefore a flux of energy q and a flux of mass exchanged between 
the two phases until the return to the equilibrium, defined by a 
saturation curve Psat(T) in the pressure-temperature (P, T) diagram. 
Psat(T) is assumed to follow Antoine‟s law: 

   (5)
 with A, B, C depending on the fluid in the chamber. 

Alternatively, Clapeyron‟s formula will be used in the vicinity of a 
point  at the equilibrium: 

   (6) 

Like Bagnold‟s problem, this extended problem is assumed as a 1D 
problem: every parameter keeps the same value at a given z and all 
extensive parameters are defined with regard to a surface unit. Gravity 
is disregarded. Extension is trivial. 
 
Theoretical model in dimensional form 
 
The ordinary differential equations that describe the evolution of the 
system are : 

  (7) 

    (8) 

    (9) 

      (10) 



 .    (11) 

The meaning of these equations is as follows: (7) evolution of the 
energy of the vapor, (8) evolution of the mass of the vapor, (9) 
Evolution of the total energy of the substance, (10) Conservation of 
total mass, (11) fundamental principle of dynamics applied to the piston 
without gravity. 

The power provided by the piston when moving is . The 

term that appears in equations (7) and (9) represents only the share 
exchanged with the gas in the chamber. 

In Non Equilibrium Thermodynamics (NET), see e.g. Lebon et al. 
(2008), the fluxes of energy q and mass  vanish when the 
thermodynamic equilibrium is reached i.e. on the saturation curve. 
These fluxes can be explicitly expressed as follows: 

 (12);  (13) 

 and  being the thermodynamic forces, with 

 and  the chemical potential of respectively the gas and the liquid. 

The thermodynamic forces can eventually be expressed as: 

    (14) 

   (15) 

It remains to define Onsager's coefficients Lqq, Lµµ and Lqµ, which is not 
an easy task. In practice, they are expressed from the so-called 
resistances Rqq, Rµµ and Rqµ through simple algebraic relations (see 
Ancellin (2011)). Kinetic theory of gases allows to find analytical 
expressions for the R  for a mono-atomic gas in the vicinity of its 
triple point (see e.g. Bedeaux and Kjelstrup (1999)). Since we are 
neither considering mono-atomic gas nor states close to the triple point, 
we shall only retain from these expressions the order of magnitude for 
Onsager's coefficients L . A sensibility study with respect to the value 
of these coefficients will therefore be addressed later in this paper. 
 
Theoretical model in dimensionless form 
 
From  and the time t, we can define a dimensionless time , 
with . 
In the same way we define the dimensionless variables 

corresponding respectively to e, E, n, z,  by: 

, , ,  
and . 

The initial conditions of the problem become: 

, , , ,  with 
 the initial gas fraction. 

Dimensionless temperatures in the gas and in the liquid and 
dimensionless pressure in the gas are also defined by reference to their 
respective initial values : , , . 

After some simplifications/linearizations of the problem, including 
setting to zero the coupling Onsager‟s coefficient  (this point will be 
justified later) and using Clapeyron‟s formula (6) for defining the 
saturation curve, the equations (7), (8), (9), (10), (11) become: 

  (16) 

       (17) 

     (18) 

       (19) 

     (20) 

This exhibits some dimensionless numbers: 

, ,  are related to the fluid properties; 

,  can be considered as characteristic 
dimensionless frequencies respectively related to the energy transfer 
and the mass transfer; 

is the impact number appearing in the traditional 
Bagnold model (see Bogaert et al. (2010) and Kimmoun et al. (2010)). 
 
Implementation 
 
Two programs have been written in Matlab: 

 Program 1: parameters are in dimensional form, the piston is fixed 
(z(t)=z0), Initial conditions for gas and liquid phases are out of the 
thermodynamic equilibrium, Onsager‟s transport coefficients Lqq, 
Lµµ, Lqµ are calculated according to kinetic theory of gases; 

 Program 2: parameters are in dimensionless form, the piston has an 
initial velocity. Initial conditions are in thermodynamic 
equilibrium. Onsager‟s transport coefficients Lqq and Lµµ are 
assumed as constants: Lqq = 109 kg K s-3, Lµµ = 1 mol2 K J-1 s-1m-2 
for water and Lqq = 109 kg K s-3, Lµµ = 100 mol2 K J-1 s-1m-2 for 
methane. As even the order of magnitude of these values is 
uncertain, their influence is studied in detail. 

Bagnold‟s model corresponds to q = 0 (no energy transfer) and 
no mass transfer). It corresponds also to  when 

using the dimensionless model. The case of energy transfer between 
phases, without mass transfer (  can also be studied with this 
model. 

Properties of water and methane are shown in Table 1. 

Table 1 – Properties of water and methane. 
Quantity Water Methane 
M (kg.mol-1) 0.018 0.016 
Lvap (J . mol-1) 37 500 8 100 
Cg (JK-1mol-1) 28 40 
Cl (JK-1mol-1) 75 55 

l (kg.m-3) 1 000 416 
Ptriple (bar) 0.006 0.11 
Ttriple (K) 273 90 
Pcritic (bar) 220 46 
Tcritic (K) 647 190 
A in Psat 5.083 3.98 
B (K) in Psat 1 663.12 443 
C (K) in Psat -45.62 -0.49 
 



SENSITIVITY STUDIES 
 
In this section, sensitivity studies are presented in order to show how 
the fluid manage to come back to a thermodynamic equilibrium starting 
from non-equilibrium conditions and also to check the influence of the 
Onsager‟s transport coefficients for the values of which a large 
uncertainty exists. 

All results presented in this section have been obtained with Program 1 
for a fixed piston (   ),.with water. In the different 
graphs, curves related to the gas behavior are plotted in red whilst 
curves related to the liquid are plotted in blue. 
 
Influence of initial pressure  and temperature  in the 
gas: case 1 
 
Initial temperature of the liquid is taken at . Initial liquid 
fraction is fixed by . With this initial liquid fraction, liquid 
phase represents 1% of the volume but 95% of the total mass. 

4 x 4 initial conditions have been studied corresponding to pressures 
90, 100, 110, 120 kPa and temperatures varying from 362.5 K 

to 377.5 K by step of 5 K. Results are shown in Figure 5 and Figure 6. 

 
Figure 5 – Histories of temperatures in gas (red) and in liquid (blue) - 
4 initial temperatures of gas (  and 
4 initial pressures of gas (  

 . 

 
Figure 6 – Pressure vs. temperature in gas (red) and in liquid (blue) -  
4 initial temperatures of gas (  and 
4 initial pressures of gas (  - Saturation 
curve in grey -  . 

There are two different steps in the relaxation : the return to thermal 
equilibrium lasts about 25 ms. Afterwards, the temperatures and 
pressures of liquid and gas evolve similarly on the same side of the 
saturation curve in the (P, T) diagram, until the return to liquid-vapor 
equilibrium, which lasts about 200 ms for the conditions studied. 

The four calculations with an initial pressure of 90 kPa lead to a final 
equilibrium through a vaporization process. All the other calculations 
correspond to a condensation process. 

The final thermodynamic equilibrium is more influenced by the initial 
pressure than the initial temperature in the gas. A larger initial pressure 
leads to a larger final pressure for a large range of initial temperature. 
Surprisingly, for a fixed initial pressure, a larger initial temperature 
leads to a smaller final temperature whatever the initial pressure. 
 
Influence of initial liquid fraction: case 2 
 
Initial temperature of gas and liquid are respectively  and 

. Initial pressure in the gas is . 

Six initial liquid volume fractions and corresponding initial liquid mass 
fractions have been studied according to Table 2. The return to the 
equilibrium is shown in a (P, T) diagram represented in Figure 7. 

Table 2 – Liquid volume fractions and mass fractions in calculations 
presented in Figure 7. 

Curve index Liquid volume 
fraction 

Liquid mass 
fraction 

a 13 % 99.5 % 
b 1.8 % 97 % 
c 0.24 % 80 % 
d 0.034 % 35 % 
e 0.0045 % 7 % 
f 0.00061 % 1 % 

 
Figure 7 – Pressure vs. temperature in gas (red) and liquid (blue) for 
six different initial liquid volume fractions given in Table 2 - 
Saturation curve in grey. 

 . 

The six calculations start with the same imbalanced conditions with 
regards to the saturation curve but the final equilibrium depends 
strongly on the initial liquid fraction. Indeed the latent heat will 
influence differently the temperatures according to the quantity of 
liquid that will provide or gain it. 

Two asymptotic cases can be observed: 
 When there is a large fraction of liquid (cases a and b), the liquid 

acts like a thermostat. The liquid temperature is very stable and 
fixes the final state. The gas pressure must increase together with its 



temperature during eventually an evaporation process. 
 When the initial liquid volume fraction is small (cases e and f), the 

liquid temperature decreases first at constant pressure and 
afterwards increases together with its pressure. The turn between 
the two phases is very sharp and not intuitive. 

 
Influence of Onsager’s coupling coefficient Lqµ 
 
Ten calculations are made multiplying Onsager‟s coupling coefficient 

 by a coefficient varying between 0 et 9, for initial conditions 
corresponding to 

is calculated according to kinetic theory of gases. 
Results are shown in Figure 8. 

  
Histories of temperatures in gas 

(red) and liquid (blue) 
Pressure vs. temperature in gas 

(red) and liquid (blue). 
Saturation curve in grey. 

Figure 8 – Influence of Onsager‟s coupling coefficient. –  
 with  

  m. 

As expected coupling coefficients have no influence on the final state 
of equilibrium. For small coupling coefficient the thermal stage is more 
disconnected from the mass transfer stage. In that case, this last stage 
evolves for a large period of time with equal temperature and pressure 
in both phases. The results obtained with are very close to those 
obtained with This has been checked with other very different 
initial conditions. 

Therefore, neglecting  in Program 2 should not lead to noticeable 
different results than with Program 1. This does not mean that small 
values of the coupling coefficient are relevant. 
 
Time evolution of Onsager’s coefficients Lqq, Lµµ and Lqµ 
 
Program 1 takes into account Onsager‟s coefficients as determined at 
each time step by analytical expressions from kinetic theory of gases 
under the assumption of a mono-atomic gas in the vicinity of its triple 
point (see Bedeaux and Kjelstrup, 1999). 

The time histories of the three coefficients for three calculations from 
case 1 (see Figure 5 and Figure 6) are presented in Figure 9 in terms 
of relative variations with regard to their initial values. 

The three cases correspond to , 
 and  

for  . The three lines Lqq(t), Lµµ(t) 
and Lqµ(t) are grouped for each case, which are respectively defined 
from top to bottom in the figure. 

 
 

 
 

 m 
Figure 9 – Relative time variations of Onsager‟s coefficients Lqq (red), 
Lµµ (blue) and Lqµ (green) with regard to their initial value. 

The time histories of the three coefficients for three calculations from 
case 2 (see Figure 7) are presented in Figure 10 in terms of relative 
variations with regard to their initial values. The cases correspond to 
gas fractions a, c, e in Table 2. 

 
 

Liquid fractions in Table 2– case 2 a, c, e 
Figure 10 – Relative time variations of Onsager‟s coefficients Lqq 
(red), Lµµ (blue) and Lqµ (green) with regard to their initial value. 

For the different relaxations from case 1, the three coefficients vary 
within [0.91, 1.075]. For case 2, they vary within [1.0, 1.19]. 
 Lqq is the largest coefficient and has also the largest variations 

(120% of its initial value). Lµµ is the smallest with also the smallest 
variations. 

 Variations are more important for large liquid fractions (a > c > e). 

The assumption of constant Onsager‟s coefficients makes the 
calculations much easier but might be sometimes not completely 
relevant. Now, the values for these assumed-constant-coefficients are 
also uncertain. The influence of these values is addressed in the next 
section. 
 
COMPARISON WITH BAGNOLD MODEL 
 
Bagnold‟s model (see Bagnold, 1939) can be written in a dimensionless 
form. A single dimensionless number, the impact number 

, governs the behaviors of the piston and the gas chamber. S is 
representative of the violence of the impact: the larger S, the more 
violent the impact. 

In this section, the results obtained with the extended model with phase 



transition are compared with those obtained with the Bagnold model. 
Program 2, in dimensionless form, is used for the extended model. 

First of all the influence of Onsager‟s coefficients, considered as 
constant versus time, is addressed, as the values to take for these 
constants are the most uncertain in the model. Afterwards, the influence 
of the initial liquid fraction is studied. Finally time histories are given 
for the main parameters including the pressure inside the gas chamber. 
 
Influence of e and n 
 
The values of Onsager‟s coefficients and .are disputed. Indeed, 
the discrepancies between different experimental results or between 
theoretical values (kinetic theory of gases) and experimental values can 
be important (see Fang et al. (1999), Bedeaux et al. (1999), Badam et 
al. (2007)). 

The influence of these coefficients is studied, keeping the other 
parameters unchanged. The whole reasonable range of values is 
screened. Their variations induce directly the variations of e and n, 
the two dimensionless characteristic frequencies of respectively the 
thermal transfer and the mass transfer. 

The results are presented for initial conditions corresponding on the one 
hand to water/vapor ( ) and 
on the other hand to methane (

), both initially considered in thermodynamic equilibrium at 
atmospheric pressure. For both cases, impact conditions correspond to 

 = 7.07 s-1, S=0.5, . 

Results are presented in Figure 11 in terms of dimensionless pressure 
. As, after tests presented in Maillard et al., (2009), damping of the 

oscillations were expected, not only the first maximum pressure is 
displayed but also the maximum of the second peak, as a measure of 
the decay. Both pressures are presented as surfaces in the plane 
(log( e), log( n)). The value obtained with Bagnold solution is 
presented as a plane  as reference. The three surfaces are 
superimposed in transparence. 

  

Water -  Methane -  
Figure 11 - Dimensionless pressure vs. Dimensionless energy transfer 
frequency e and dimensionless mass transfer frequency n. 

Maximum pressure with Bagnold model (green) 
Maximum pressure with phase transition model (pink) 

Maximum second pressure peak with phase transition model (blue) 
 = 7.07 s-1, S=0.5, ,  

For both fluids (water and methane), the results show a double 
resonance phenomenon: one related to the thermal transfer governed by 

e and one related to the mass transfer governed by n. 

This means that there is a set of properties that is the most suited for a 
maximum energy transfer and there is a set of properties that is the 
most suited for a maximum mass transfer during the duration of the 

selected impact. 

When e is small or when n is small, the thermal transfer or the mass 
transfer are too slow to have any influence during the impact. When 
both of them are small at the same time the results are the same as with 
Bagnold model. 

According to the extended Bagnold‟s model, the first peak is always 
mitigated and the oscillations are always damped, whatever the values 
for and  taken in all the possible range for them. This is true for 
both water and methane. Depending on the values taken for and 

 and the resulting distance to both energy and mass transfer 
resonances, the mitigation will be more or less pronounced. The 
sloshing model vapor tests presented in Maillard et al. (2009) seem to 
prove that a very strong attenuation of the oscillations is actually 
possible with water. 

Considering the large uncertainties on the data for defining Onsager‟s 
coefficients and as the trends for methane and water are the same, the 
results presented below refer only to water with Lqq = 109 kg K s-3 and 
Lµµ = 1 mol2 K J-1 s-1m-2. 
 
Influence of the initial gas fraction 
 
For any value of the initial volume gas fraction , we would like to 
obtain a modified Bagnold curve . Actually, it means that we 
need to build a surface  in the plane (S, ). As we want 
not only to quantify a possible reduction or magnification of the 
maximum pressure inside the gas chamber but also quantify the 
damping of the oscillations, we would also like to obtain a second 
curve (S) corresponding to the maximum pressure during 
the second oscillation, therefore a second surface (S, ). 

Figure 12 presents the two surfaces plus a third surface defined from 
Bagnold curve  by . 
The three surfaces are superimposed in transparence for initial 
conditions corresponding to water and vapor with 

,  and with  calculated from 
MPiston = 1000 kg, z0=1 m and S. 

 
Figure 12 – Dimensionless pressure vs. inital gas fraction  and 
impact number S. 

Maximum pressure with Bagnold model (green) 
Maximum pressure with Phase transition model (pink) 

Maximum second pressure peak with phase transition model (blue) 
,  Lqq = 109 kg K s-3, Lµµ = 1 mol2 K J-1 s-1m-2, 

 is calculated from MPiston = 1000 kg, z0=1 m and S. 



Whatever the value of the initial gas fraction, the maximum pressure is 
reduced when energy and mass transfer are possible and the second 
maximum is reduced compared to the first. These two reductions are 
larger when the liquid fraction increases. The damping of the gas 
pocket oscillations can be very large when the liquid is dominant. 

The limit cases displayed in Figure 12 are for  and . 
For , all the gas is transformed into liquid during the first 
compression and the piston reaches the bottom. For , all the 
liquid evaporates during the first ascent of the piston. 

These trends are exactly those that have been observed during sloshing 
model tests with water and vapor as described by Maillard et al. (2009). 
It is therefore, reasonable to consider that energy and mass transfers 
between phases are the causes for both the reduction of statistical 
pressure and the vanishing of pressure oscillations for gas pockets that 
have been reported. This comparison with the vapor tests will be 
addressed further with the pressure time histories in the next sub-
section. 

 is to be considered as the parameter that defines the quantity of 
liquid involved in the energy and mass transfers when the quantity of 
gas (volume of the entrapped pocket) is fixed. It is different from the 
impacting mass (piston mass in the Bagnold model). When a gas pocket 
is entrapped during a sloshing impact, the quantity of gas to consider is 
trivially defined. But, as for the impacting liquid mass, it is not easy to 
define the liquid mass involved in the thermodynamic transfers. 
Nevertheless, it seems reasonable to consider that this liquid mass is 
larger for impacts at high filling levels than for impacts at low filling 
levels in a LNG tank and that the liquid fraction is high. Actually, a 
possible improvement of the model could be to discriminate the liquid 
mass involved in the energy transfer from the liquid mass involved in 
the mass transfer. 
 
Time histories of the parameters 
 
With the Bagnold model, dimensionless elevation of the piston  and 
pressure  oscillate without any damping. The characteristics of the 
oscillations depend only on the impact number S. Obviously, with the 
Bagnold model the gas fraction  remains constant. 

Figure 13 shows the time histories for for the following 
initial conditions corresponding to water and vapor: , 

 and  , . 

For such a high impact number, Bagnold model (results in dashed lines 
on the figure) leads to periodic oscillations of the piston with quick 
drops corresponding to sharp pressure rises followed by slow ascents 
corresponding to smooth pressure relaxations with a minimum pressure 
below the initial pressure. With the extended model taking into account 
energy and mass transfers between the phases, the oscillations of the 
piston elevation and of the gas pressure appear to be strongly damped 
and the first peak pressure is reduced as observed during sloshing 
model tests with water and vapor described by Maillard et al. (2009). 

Actually, the damping of the oscillations for entrapped gas pockets 
during the sloshing vapor tests (see Figure 2) is even more pronounced 
than in the calculated results when considering a liquid fraction of 

. During the sloshing tests with vapor, for all the gas pockets 
entrapped, the oscillations vanished almost completely. This was 
obtained for high fillings, for impacts in the corners of the ceiling. Such 
vanishing of the oscillations can be obtained with the extended Bagnold 
model with very low values of  (around 0.05), namely very high 
liquid fractions. 

 
13.1 – History of the dimensionless elevation of the piston  

 
13.2 – History of the gas fraction  

 
13.3 –History of the dimensionless pressure  

Figure 13 - Time histories for top) (middle) (bottom) - 
 

Lqq = 109 kg K s-3, Lµµ = 1 mol2 K J-1 s-1m-2 - Bagnold results in dashed line. 

The gas fraction presents also damped oscillations, starting by a strong 
drop (condensation). These oscillations are delayed compared to the 
pressure oscillations without phase transition because of the different 
time characteristics of the phenomena. This delay, brought by the 
energy transfer or/and the mass transfer between phases, explains the 
delay between the pressure curves. It is connected to the resonance 
phenomenon shown in Figure 11 This delay is progressively gained, 
especially during each quick compression phases, as could be expected. 

The final balance is positive for the gas phase, which means that the 
impact led finally to a certain amount of boil-off. This was also 
expected since the piston brought an external amount of energy to the 
fluid. This added boil-off could also be considered as the price for a 
sloshing pressure reduction… 
 
SCALING GAS POCKET PRESSURES 
 
As it has been done in Bogaert et al. (2010) and Kimmoun et al. (2010) 
with Bagnold‟s model, it is very tempting to use the extended model at 
two different scales in order to compare pressures obtained in gas 



pockets at both scales. Lafeber et al. (2012) showed that this approach 
is perfectly relevant by comparing directly two couples of Froude-
similar breaking waves at two different scales. 

Figure 14 displays Bagnold‟s curve  (in red) together with 
, the maximum dimensionless pressure versus the impact 

number S obtained with the extended model (in blue), considering 
initial conditions corresponding to methane at thermodynamic 
equilibrium at atmospheric pressure 

, values of Onsager‟s coefficients derived from kinetic theory 
of gases (Lqq = 109 kg K s-3 and Lµµ = 100 mol2 K J-1 s-1m-2) and the 
initial gas volume fraction set to  

As shown in Figure 11 (right), the values of Lqq and Lµµ are not known 
precisely for methane but have a large influence on the resulting 
maximum pressure in the gas chamber whatever the impact number S. 
Initial gas fraction is also not precisely determined but has a large 
influence, as shown in Figure 12. Therefore, the extended Bagnold‟s 
curve taking care of phase transition for methane, displayed in 
Figure 14 is also uncertain. Anyway, it must lie below Bagnold‟s curve 
but how far from it is still an open question. 

Therefore, the following must be considered as an exercice, which 
should be updated when confirmed data are available to feed the model. 

 
Figure 14 – Maximum dimensionless pressures obtained with 
Bagnold‟s model (red) and with the extended Bagnold‟s model for 
methane (blue) vs. impact number S for initial conditions 
corresponding to methane -  

           

Let‟s consider a sloshing impact with a gas pocket entrapment obtained 
at model scale 1/  during sloshing model tests with water and the 
Froude-similar impact at full scale with methane, initially in 
thermodynamic equilibrium at atmospheric pressure. 

Bagnold‟s model with red curve of Figure 14 is relevant for describing 
the gas pocket behavior without phase transition at small scale. Blue 
curve of Figure 14 is assumed to be relevant for describing the gas 
pocket behavior with methane at full scale. 

The pressures at full scale  can be derived simply from the 
pressures at small scale  by the following approach, illustrated in 
Figure 14 for =40, which corresponds to the usual scale for sloshing 
model tests in GTT. 

For a given pressure , can be deduced the corresponding value of 
the impact number at small scale . As the inflow conditions are 
Froude-similar at both scales, there is a relation between the impact 
numbers at both scales : , where 1/µ is the mass scale 

for liquids , assuming that the mass piston is obtained at both 

scales by scaled lengths of liquids.  can now be simply derived 
from  and the blue curve. 

Results displayed in Figure 14 shows that a dynamic pressure (P-P0) of 
0.3 bar measured in a gas pocket at model scale would correspond to a 
dynamic pressure of 2.45 bars at full scale without phase transition but 
only to 1.65 bars with phase transition. The magnitude of the mitigation 
is therefore 33%. Applying wrongly a Froude similarity to the gas 
pocket pressure would have led to a pressure of 5.4 bars. 

Figure 15 shows pressures at full scale as a function of pressures at 
small scale following the previous approach. 

 
Figure 15 – Pressures at full scale vs. pressure at model scale for gas 
pockets - Froude scaling (green), Bagnold‟s model (red), extended 
Bagnold‟s model (blue) for initial conditions corresponding to methane 

 
 

 
CONCLUSIONS 
 
An extension of Bagnold‟s piston model has been developed in order to 
include the energy and mass transfers occurring between a liquid and 
its vapor during a liquid impact with a vapor pocket entrapped, when 
the two phases are close to a thermodynamic equilibrium. The objective 
is to better understand the role of phase transition during sloshing 
impacts on board membrane LNG carriers. 

The model is based on Non-Equilibrium Thermodynamics (NET) and 
allows to simulate the relaxation phase for a pure fluid in between 
initial unbalanced thermodynamic conditions and the final equilibrium 
along the phase boundary. It is a more sophisticated model than the 
model presented in Braeunig et al., (2010) but nevertheless also more 
robust, likely because it includes more physics (energy conservation). 

The model allows to study the thermodynamic relaxation for a large 
range of initial conditions, including different initial relative locations 
in the (P, T) diagram for the liquid and gas phases with regard to the 
saturation curve and different liquid volume fractions. 

The model uses the three Onsager‟s transport coefficients. They are 
supposed to evolve slightly with the thermodynamic parameters. After 
a sensitivity study for several initial conditions with a complete 
determination of Onsager‟s coefficients based on the kinetic theory of 
gases, the range of variation of each coefficient has been considered as 
sufficiently narrow to keep them constant without much loss of 
accuracy. Moreover, the coupling coefficient has been neglected, 
considering its influence as insignificant. Nevertheless the values for 
the two remaining constants are controversial and the large range 



offered by experimental or theoretical results for these values brings a 
large uncertainty on the fluid properties used in the model. 

A dimensionless version of the model has been developed and 
implemented under Matlab. Impact number S, which is characteristic of 
the impact strength and governs the simple Bagnold‟s model, is also 
one of the dimensionless numbers of the extended problem. Other 
dimensionless numbers are related to thermo-dynamic properties of the 
fluid (thermal capacities, latent heat), but also characteristic times for 
respectively energy transfer and mass transfer. 

When these times are too large for any energy or mass transfer to be 
possible during the short impact duration, the model tends naturally 
towards Bagnold‟s solution. 

Whatever the exact values of the Onsager‟s coefficients in the whole 
reasonable range for them, phase transition always leads to a reduction 
of the maximum pressure in the gas pocket and to oscillation damping, 
according to the model proposed. Depending on the fluid properties 
(including Onsager‟s coefficients) and initial conditions, a double 
„resonance‟ of the mitigation process is possible, when the 
characteristic times of the energy and mass transfers are well fitted to 
the impact duration. The mitigation process is also significantly favored 
by a large presence of liquid around the entrapped gas. 

Provided that the liquid fraction is high, time traces of the gas pocket 
pressure, as calculated by the model, are very much alike those 
obtained during sloshing model tests with water and vapor (see 
Figure 2 extracted from Maillard et al., 2009), with almost complete 
disappearance of the pressure oscillations in all gas pockets. 
Furthermore, the reduction of statistical pressures that is reported by 
Maillard, when comparing sloshing tests with and without possible 
phase transition but with the same density ratio between gas and liquid, 
is perfectly understandable by the mitigation process shown by 
Bagnold‟s extended model. 

The strength of such surrogate models based on Ordinary Differential 
Equations (ODE) had already been demonstrated in Bogaert et al. 
(2010) or Kimmoun et al. (2010) by giving a convincing explanation to 
the different experimental scaling factors obtained when comparing 
wave impact gas pocket pressures and oscillation frequencies at 
different scales. Here, the extended Bagnod‟s model was also able to 
explain additional experimental trends observed for wave impact gas 
pocket pressures when phase transition is involved. 

Using this model for scaling gas pocket pressures from sloshing model 
test scale to full LNG tank scale is tempting. As the impact numbers at 
both scales are simply related by a factor which is the product of the 
geometrical and the liquid density scales, deriving a scaled pressure 
from a model scale pressure is trivial using the relevant  
curve related to methane, obtained from the model. Unfortunately, as 
there is a large uncertainty on the thermodynamic properties as well as 
the liquid fraction to introduce into the model, there is also a large 
uncertainty on the real shape of  curve. Nevertheless the 
general mitigation process brought by phase transition leads thus to 
exhibit an additional safety margin, the magnitude of which only is 
uncertain. 

Although the authors are convinced of the generality of the mitigation 
process due to phase transition, they must admit that, up to now, it lies 
only on a theoretical model based on strong assumptions (pure fluid, 
perfect gas, constant temperature in each phase) and on sloshing model 
tests with water and vapor, also with strong restrictions (only high fills) 
and not especially designed to address the phase transition influence. 
Additional experimental data would be therefore very much welcome 
to confirm the trend. The best would be to perform wave impact tests in 
a small flume lying in a pressure vessel, in order to enable the use of 

water in equilibrium with its vapor, but also to use other kinds of non 
condensable gases for comparison. Wave impact tests would be more 
suitable than sloshing model tests for such a purpose as they allow to 
accurately obtain repeatable shapes of breaking waves in front of the 
impacted wall and therefore accurately repeatable pressures measured 
within the entrapped gas pockets. 

The extended Bagnold‟s piston model to phase transition deserves 
some further extensions. Among them, the introduction of a thermal 
gradient along the piston course axis, the possibility to take into 
account phase transition within the bulk of both phases far from the 
existing interface and the introduction of external thermal exchange, 
seem to be the most relevant. 

More generally, the development and use of more and more 
sophisticated surrogate models (ODE or 1D Partial Differential 
Equations (PDE)), in addition to dedicated experiments (see Lafeber et 
al., 2012) and numerical simulations (see Guilcher et al., 2012), 
remains a research objective of GTT for a more and more direct 
approach to address the scaling issues generated by the biased gas and 
liquid properties during model tests. Bagnold‟s model can be 
considered as the most simple base, from which are introduced many 
extensions such as : escaping of gas, liquid compressibility, aeration, 
fluid-structure interactions, etc, as well as phase transition, in order to 
eventually cover the complete impact chart possibilities described in 
Figure 1. 

As the designer of the membrane containment systems for LNG tanks, 
the main objective of GTT remains the safety of its solutions onboard 
LNG ships. It has to be checked carefully whether the phase transition 
could be, in certain conditions to be determined, an amplifying 
phenomenon of the sloshing impact pressures. Up to now, through the 
sloshing model tests with water and vapor and through results of the 
extended Bagnold‟s model, the phase transition looks as a mitigating 
effect that is not taken into account during the sloshing model tests, 
therefore adding implicitly a safety factor to the tests results. 

The mechanism described with this model leads finally at each initial 
compression of the piston to evaporation, whatever the way to reach the 
new state of equilibrium. This is intuitively normal as external energy is 
brought by the piston to the fluid. Transposed to LNG carriers, this 
would mean that at each sloshing impact involving a gas pocket, a 
certain amount of boil-off is generated, which is the price for a 
reduction of the induced pressure. Therefore, this anti-sloshing 
mechanism is likely responsible for a good share in the increased boil-
off observed by the operators at each loaded journey of LNG ships with 
harsh sea conditions. It should be comforting for them to consider now 
that this inconvenience is not a pure waste. 
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